
ANALYTICAL VALIDATION OF 
DIGITAL MOUSE DETECTION, 
IDENTIFICATION, AND 
ACTIVITY IN THE JAX 
ENVISIONTM PLATFORM

  Summary
•	 The foundation of the JAX Envision™ platform is a set of machine learning algorithms that detect and identify 

individual mice within their home cage.

•	 Using an analytical validation framework, Envision demonstrates strong detection and identification efficiency 
and accuracy across a broad range of mouse strains and microenvironmental conditions. 

•	 When mice are clearly visible, the JAX Envision platform detects and identifies mice with accuracy of 99.9% and 
95.2%, respectively, against a human annotated validation dataset.

•	 The results of this validation highlight how the JAX Envision platform enables continuous experimental 
monitoring with highly accurate detection and tracking of individual mice in a cage for weeks to months at a 
time.

Rapid advances in sensor technologies and computational capabilities have provided a unique opportunity to enhance 
the value of animal studies. Complementing standard measures with continuous measures of behavior and physiology 
in the home cage environment provides a more dynamic, biologically, and clinically relevant characterization of disease 
progression and therapeutic effects. 

Several approaches to addressing these issues have been identified, including home cage RFID tracking, photo beam 
interruption, and camera-based systems. Though laboratory mice spend most of their lifetime in the home cage, few 
available tools are capable of continuously monitoring mouse home cage behavior longitudinally. 

Mice are social animals and both behavior and physiology are impacted by their social environment. However, 
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Figure 1
JAX Envision® platform utilizing (i) a custom convolutional neural network for mouse detection and (ii) transformer model for ear tag 

identification individually can track multiple mice within a home cage in both the light and dark cycles in a diversity of microenvironments.

existing tools have not been able to reliably isolate and quantify the behavior of an individual animal in a group-housed 
environment. Additionally, most behavioral work occurs during the light cycle, despite mice being nocturnal animals. 
The dark cycle thus represents great unexploited potential to understand mouse behavior in context.

Through machine-learning-powered computer vision, cloud-based storage and analysis, and a readily accessible user 
interface, Envision™ by The Jackson Laboratory overcomes these barriers and empowers preclinical researchers 
with validated, translatable digital readouts of animal behavior in the home cage. Continuous monitoring provides 
unprecedented resolution of both discrete behavior and longitudinal variance – all aided by intuitive, flexible 
visualization tools. Moreover, by providing access to collaborative development environments, Envision paves the way for 
future advances in behavioral monitoring, improving the value of preclinical studies.

Envision facilitates automated machine learning behavioral analysis and supports longitudinal assessment of 
spontaneous behavior, enabling the detection of subtleties that may go unnoticed by gross cage-side observations. The 
platform continuously records and performs dynamic analysis of video for up to three uniquely ear-tagged mice housed 
in the same home cage. Envision enables continuous and seamless home cage analysis of individual mice within a group 
for weeks to months, in both the light and dark cycles, and with substantially greater capture of microenvironmental 
detail (Figure 1).

  Verification & Validation of Mouse Detection, 
Mouse Identification, and Average Movement 
The foundation of the JAX Envision platform is a set of ML-based computer vision algorithms that 1) detect mice, 
a process referred to as mouse detection; 2) identify individual mice within a cage, a process referred to as mouse 
identification; and 3) generate average activity measures at the cage and individual animal level1. To ensure scientific 
rigor and provide evidence supporting the reliability and relevance of the detection, identification, and average activity 
algorithms, we analytically validated the models under several conditions in line with the concepts described in the V3 
Framework originally published by the Digital Medicine Society2 and adapted for preclinical use by the Digital In Vivo 
Alliance (DIVA)3, and adopted by DIVA and the 3Rs Collaborative4,5. 
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Figure 2
Patterns used on the custom RapID® ear tags for animal 

identification.

Methods - Verification
The Envision platform features a highly optimized camera system, including a unique demosaicing scheme for night 
imagery, that maximizes video quality for off-line analysis and model inference performance. Various frame rates, 
resolutions, and codecs were experimented with to assess the system’s overall performance using widely adopted 
industry metrics such as Peak-Signal-To-Noise-Ratio and Visual Multimethod Assessment Function (VMAF). The net 
result is the JAX Envision platform produces extremely sharp high-definition video that enables the machine learning 
pipeline to track and identify mice in a variety of lightning conditions with high accuracy.

Analytical Validation - Detection and Identification
For validation of mouse detection and identification, one hundred video clips, each one minute in length of mice in the 
Allentown Discovery™ IVC cages, were selected. Cage dimensions were 6.14” x 5.04” x 12.64”, with 500 cm² floor space 
on the interior of the cage. These videos represented a diversity of environmental conditions, including contrasting 
mouse strains/coat colors (C3H/HeJ, C57BL/6J, and BALB/cJ), bedding (Alpha-dri®, Aspen Chips, Sani-chips), 
enrichment (wood blocks) and nesting materials (4-8 grams brown shredded paper and 1-2 cotton squares), levels of 
occlusion, and lighting conditions (both light and dark cycle). It is important to note that cage videos used for validation 
were not the same as those used for the training set. This separation of data by cage prevents the possibility of artificially 
inflated model performance due to information in the validation dataset being present in the training dataset (data 
leakage).

To compare the machine learning algorithms with known locations of mice, a ground truth dataset was generated by 
human observers. Annotators created bounding boxes outlining each visible mouse in the cage at short intervals between 
selected videos. Bounding box locations were interpolated linearly during these internals between human annotations. 
Bounding boxes were tagged with the ear tag of the mouse being annotated, so each box contained information about 
both mouse ID and location. Using this approach, the model was validated using 100 minutes of video data, comprised 
of approximately 180,000 frames of video and 498,099 mouse bounding boxes. The ground truth dataset represents both 
the light and dark cycle as well as agouti, black, and white mice. Several iterations of algorithms were validated against 
this dataset to examine the evolution of algorithm performance resulting from algorithm improvements.

Mice were identified with custom RapID® barcoded ear tags (Figure 2). One tag was placed in each ear of each mouse 
with one tag positioned anteriorly and the other positioned posteriorly.  

To assess the performance of the detection and identification models (2025 v3.0), the primary validation measures were 
efficiency and accuracy (Figure 3). For both detection and identification models, efficiency penalizes false negatives 
while accuracy penalizes false positives. Detection efficiency was determined by quantifying the number of detections 
made by the hydra (foundational) model for a video and then normalizing this quantity by the number of mice detected 
in the ground truth annotations for the same video. The number of mice in a frame of the ground truth dataset was 3 
when there was no occlusion, but various sources of occlusion could reduce the number of mice in the ground truth, thus 
reducing the number of possible detections. Partially occluded mice were counted as valid opportunities for detection.  
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Figure 3
Examples of varying levels of detection efficiency and accuracy as well as identification efficiency and accuracy.

While detection efficiency simply compares the number of bounding boxes between the model inferences and the 
ground truth, detection accuracy quantifies the matches between model detections and ground truth annotations. A 
"match" was defined as any model detection where the predicted bounding box for the mouse overlapped a ground truth 
bounding box by at least 90% (based on Intersection over Union, or IoU). Detection accuracy was then calculated by 
dividing the number of these matches by the total number of model detections, resulting in the percentage of model 
detections that correspond to a true mouse. 

Identification efficiency was calculated as the number of times the model assigned a mouse identity over the total number 
of mouse detections in the ground truth dataset. Note that when an animal was partially occluded, as long as the mouse 
was detected by the model, this was still counted as an opportunity to identify an animal. Identification accuracy was 
calculated as the proportion of correct mouse identifications relative to the total number of identifications made by the 
model.

Videos were sorted by clear visibility, no occlusion, and partial occlusion. Clear visibility included 39,600 frames of 
video where mice were clearly visible and included no occlusion and no hanging or climbing for more than 5 seconds. 
No occlusion included 90,000 frames of video when mice were not occluded (but included climbing and hanging which 
influence visibility). Finally, partial occlusion included 90,000 frames of video when mice were partially occluded by 
nesting material, other mice in the cage, or cage furniture such as the water bottle. Performance metrics were then 
calculated for each condition.

Analytical Validation - Average Activity
For average activity in mice, the same set of human-annotated data was used for detection and ID validation. Euclidean 
distances between the centroids of interpolated bounding boxes were used for these human-annotated frames. The 
resulting dataset was used to evaluate the performance of the average activity metrics both at the cage level without 
ID and at the individual animal level with ID-dependent average activity measures. In addition, we utilized a dataset 
comparing mice that were orally dosed with either 16 mg/kg caffeine or vehicle within an hour of the lights coming on 
during the light cycle. We compared one hour of activity shortly after dosing to a circadian-matched hour from the day 
before dosing.
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Detection Identification
Accuracy (%) Efficiency (%) Accuracy (%) Efficiency (%)

99.9 93.4 95.2 99.9

Figure 4
Algorithm performance metrics for detection and identification efficiency and accuracy in conditions with clear visibility.

A B C

D E F

Light Cycle
Detection Identification

Accuracy (%) Efficiency (%) Accuracy (%) Efficiency (%)

Light 99.9 94.4 95.3 98.8

Dark 100.0 90.4 92.1 100.0

Figure 5
Algorithm performance metrics for detection and identification efficiency and accuracy in conditions without occlusion by light 

cycle. Example of a cage condition A) housing 3 C57BL/6J mice during the light cycle; and B) housing 3 BALB/cJ mice during the 

light cycle; and C) housing 3 C57BL/6J mice during the light cycle; and D) housing 3 C57BL/6J mice during the light cycle; and E) 

housing 3 C3H/HeJ mice during the light cycle; and F) housing 3 C3H/HeJ mice during the dark cycle.

  Results
Detection and Identification 
Under conditions when mice were clearly visible, the JAX Envision platform detects and identifies mice with accuracy of 
99.9% and 95.2%, respectively, against the validation dataset (Figure 4).

In unoccluded conditions, detection efficiency was generally high (94.4% in the light and 90.4% in the dark cycle 
conditions (Figure 5) and, when mice were detected, the accuracy of detection was very high (99.9% in the light 
and 100% in the dark cycle conditions (Figure 5). Individual mouse identification efficiency was also very high in 
unoccluded conditions (98.8-100%, Figure 5). Identification accuracy was also very high in most cases (above 92.1-
95.3%, Figure 5).
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Figure 6
Algorithm performance metrics for detection and identification efficiency and accuracy in partially occluded conditions by light 

cycle. Example of a cage condition A) housing 3 BALB/cJ mice during the dark cycle; and B) during the dark cycle housing 3 

C57BL/6J mice; and C) during the dark cycle housing 3 BALB/cJ mice; and D) during the light cycle housing 3 BALB/cJ mice.

Light Cycle
Detection Identification

Accuracy (%) Efficiency (%) Accuracy (%) Efficiency (%)

Light 97.3 92.0 91.1 99.3

Dark 99.9 84.5 91.0 99.6

In conditions of partial occlusion, there was a slight drop in detection efficiency (92.0% in the light and 84.5% in 
the dark cycle conditions, Figure 6), as occlusion reduced the opportunities for a mouse to be positively detected. 
Identification accuracy and efficiency was also high in partially occluded conditions (91.1-99.1% and 99.3-99.6%, 
respectively, Figure 6). Partial occlusion is often associated with less activity as mice are typically resting in their nests. 
However, identification accuracy was consistently high when mice were active, indicating that activity profiles are likely 
to be reliable indicators of individual activity. 

Average Activity
Average activity is computed at the individual level with individual identification. Individual animal metrics are 
strongly correlated with human-annotated metrics (Pearson’s r = 0.875-0.954, Figure 7). The raw data showed signs of 
heteroscedasticity; therefore, a Box-Cox power transform was utilized to identify a potential transformation to remediate 
this issue. Consequently, both the human and computer vision tracked datasets were square-root transformed for further 
analysis. The results are displayed in a square-root transformed coordinate space, but the X and Y axis labels are back-
transformed. These results indicate that the output of mouse detection and identification can be used as substrates for 
derived metrics like locomotor activity.

To demonstrate that the system can produce biological insights on average activity, we utilized a dataset comparing mice 
that were orally dosed with either 16 mg/kg caffeine or vehicle within an hour of the lights coming on during the light 
cycle. We compared one hour of activity shortly after dosing to a circadian-matched hour from the day before dosing. In 
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Figure 7
Average activity validation for 1-minute clips of video. 

Envision values for individual animal average activity 

metrics strongly correlate with human annotations of the 

same clips (Pearson’s r ranges from 0.875 to 0.954).
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Figure 8
Summary of an experiment demonstrating pharmacologic 

effects using Envision. There was a substantial increase in 

average activity in mice following a high dose of caffeine 

(16 mg/kg, P.O.). Each set of points connected by a line is a 

single cage from the dataset. A two-way ANOVA of dose and 

timing explains 92.8% of the variance in the dataset.
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a two-way ANOVA model looking at date of administration (pre-dose vs dose day), drug (caffeine vs. vehicle) and their 
interaction, we explained much of the variation in cage-level average activity as computed by average activity in an hour 
(R2 = 0.928, Figure 8). This result demonstrates the utility of the system for identifying pharmacological effects on 
mouse behavior following drug administration.
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  Discussion
Under conditions when mice were clearly visible, the JAX Envision platform detects and identifies mice with 99.9% and 95.2% 
accuracy, respectively. These results indicate that the foundational mouse detection algorithm can detect mice with a high 
degree of accuracy when sufficient visual information is available. As is expected, detection accuracy drops slightly when mice 
are occluded. Therefore, occlusion by huddling or nesting material is thus a known limitation of detection, identification, 
and any derived metrics. As mice are typically asleep or resting while in the nest, it is often a fair assumption that mice are 
inactive in some way. However, we note that nesting and bedding occlusion can vary by cage, which should be considered in 
experimental design. 

Individual-level average activity is strongly correlated with human-annotated datasets, and we capture a large amount of 
biological variation in a pharmacology experiment involving caffeine administration, demonstrating the potential application 
of this platform in pharmacological research. In conclusion, the JAX Envision platform demonstrates excellent detection and 
identification efficiency and accuracy across a range of mouse strains and microenvironmental conditions.
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